Multimodal person re-identification (Re-ID) aims to match pedestrian images across different modalities. However, most existing methods focus on limited cross-modal settings and fail to support arbitrary query-retrieval combinations, hindering practical deployment. We propose FlexiReID, a flexible framework that supports seven retrieval modes across four modalities: rgb, infrared, sketches, and text. FlexiReID introduces an adaptive mixture-of-experts (MoE) mechanism to dynamically integrate diverse modality features and a cross-modal query fusion module to enhance multimodal feature extraction. To facilitate comprehensive evaluation, we construct CIRS-PEDES, a unified dataset extending four popular Re-ID datasets to include all four modalities. Extensive experiments demonstrate that FlexiReID achieves state-of-the-art performance and offers strong generalization in complex scenarios.


翻译:多模态行人重识别旨在跨不同模态匹配行人图像。然而,现有方法大多局限于有限的跨模态设定,无法支持任意的查询-检索组合,限制了实际部署。本文提出FlexiReID——一个支持RGB、红外、素描与文本四种模态间七种检索模式的灵活框架。该框架引入自适应专家混合机制以动态整合多模态特征,并设计跨模态查询融合模块以增强多模态特征提取能力。为进行全面评估,我们构建了CIRS-PEDES统一数据集,通过扩展四个主流Re-ID数据集涵盖全部四种模态。大量实验表明,FlexiReID在复杂场景中不仅达到最先进的性能,同时展现出强大的泛化能力。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员