Calibration of mean estimates for predictions is a crucial property in many applications, particularly in the fields of financial and actuarial decision-making. In this paper, we first review classical approaches for validating mean-calibration, and we discuss the Likelihood Ratio Test (LRT) within the Exponential Dispersion Family (EDF). Then, we investigate the framework of universal inference to test for mean-calibration. We develop a sub-sampled split LRT within the EDF that provides finite sample guarantees with universally valid critical values. We investigate type I error, power and e-power of this sub-sampled split LRT, we compare it to the classical LRT, and we propose a novel test statistics based on the sub-sampled split LRT to enhance the performance of the calibration test. A numerical analysis verifies that our proposal is an attractive alternative to the classical LRT achieving a high power in detecting miscalibration.


翻译:预测中均值估计的校准确立是众多应用领域,尤其是金融与精算决策中的关键性质。本文首先回顾了验证均值校准的经典方法,并讨论了指数散布族内的似然比检验。随后,我们探究了用于检验均值校准的通用推断框架。我们在指数散布族内构建了一种子采样分割似然比检验,该检验通过通用有效临界值提供了有限样本保证。我们研究了该子采样分割似然比检验的第一类错误、检验功效及e-功效,将其与经典似然比检验进行比较,并提出了一种基于子采样分割似然比检验的新检验统计量,以提升校准检验的性能。数值分析证实,我们的方案是经典似然比检验的一种有吸引力的替代方法,在检测误校准方面具有高检验功效。

0
下载
关闭预览

相关内容

人类接受高层次教育、进行原创性研究的场所。 现在的大学一般包括一个能授予硕士和博士学位的研究生院和数个专业学院,以及能授予学士学位的一个本科生院。大学还包括高等专科学校
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
84+阅读 · 2022年7月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员