We develop a pseudo maximum likelihood method for latent factor analysis in short panels without imposing sphericity nor Gaussianity. We derive an asymptotically uniformly most powerful invariant test for the number of factors. On a large panel of monthly U.S. stock returns, we separate month after month systematic and idiosyncratic risks in short subperiods of bear vs. bull market. We observe an uptrend in the paths of total and idiosyncratic volatilities. The systematic risk explains a large part of the cross-sectional total variance in bear markets but is not driven by a single factor and not spanned by observed factors.


翻译:我们提出了一种伪极大似然方法,用于短面板中的潜因子分析,该方法既不要求球形误差假设,也不要求高斯性假设。我们推导出了一种渐近一致最有效的不变检验,用于确定因子数量。在一个包含大量美国月度股票收益数据的面板中,我们逐月分离了熊市与牛市短期子期间的系统性风险和异质性风险。我们观察到总波动率和异质性波动率路径呈现上升趋势。系统性风险在熊市中解释了横截面总方差的很大一部分,但并非由单一因子驱动,且无法由观测到的因子所完全解释。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
12+阅读 · 2019年2月26日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
11+阅读 · 2018年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
76+阅读 · 2022年3月26日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
12+阅读 · 2019年2月26日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
11+阅读 · 2018年12月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员