We consider a problem of covariance estimation from a sample of i.i.d. high-dimensional random vectors. To avoid the curse of dimensionality we impose an additional assumption on the structure of the covariance matrix $\Sigma$. To be more precise we study the case when $\Sigma$ can be approximated by a sum of double Kronecker products of smaller matrices in a tensor train (TT) format. Our setup naturally extends widely known Kronecker sum and CANDECOMP/PARAFAC models but admits richer interaction across modes. We suggest an iterative polynomial time algorithm based on TT-SVD and higher-order orthogonal iteration (HOOI) adapted to Tucker-2 hybrid structure. We derive non-asymptotic dimension-free bounds on the accuracy of covariance estimation taking into account hidden Kronecker product and tensor train structures. The efficiency of our approach is illustrated with numerical experiments.


翻译:我们考虑从独立同分布的高维随机向量样本中估计协方差的问题。为避免维度灾难,我们对协方差矩阵$\Sigma$的结构施加额外假设。具体而言,我们研究$\Sigma$可通过张量列车(TT)格式下较小矩阵的双重Kronecker积之和来近似的情况。我们的设定自然扩展了广泛使用的Kronecker和与CANDECOMP/PARAFAC模型,但允许模态间更丰富的交互作用。我们提出一种基于TT-SVD和适用于Tucker-2混合结构的高阶正交迭代(HOOI)的迭代多项式时间算法。通过考虑隐藏的Kronecker积和张量列车结构,我们推导出协方差估计精度的非渐近无维度界限。数值实验证明了我们方法的有效性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VLP: A Survey on Vision-Language Pre-training
Arxiv
11+阅读 · 2022年2月21日
Arxiv
12+阅读 · 2021年9月13日
VIP会员
相关VIP内容
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员