The difference in restricted mean survival time (RMST) is a clinically meaningful measure to quantify treatment effect in randomized controlled trials, especially when the proportional hazards assumption does not hold. Several frequentist methods exist to estimate RMST adjusted for covariates based on modeling and integrating the survival function. A more natural approach may be a regression model on RMST using pseudo-observations, which allows for a direct estimation without modeling the survival function. Only a few Bayesian methods exist, and each requires a model of the survival function. We developed a new Bayesian method that combines the use of pseudo-observations with the generalized method of moments. This offers RMST estimation adjusted for covariates without the need to model the survival function, making it more attractive than existing Bayesian methods. A simulation study was conducted with different time-dependent treatment effects (early, delayed, and crossing survival) and covariate effects, showing that our approach provides valid results, aligns with existing methods, and shows improved precision after covariate adjustment. For illustration, we applied our approach to a phase III trial in prostate cancer, providing estimates of the treatment effect on RMST, comparable to existing methods. In addition, our approach provided the effect of other covariates on RMST and determined the posterior probability of the difference in RMST exceeds any given time threshold for any covariate, allowing for nuanced and interpretable results.


翻译:限制平均生存时间(RMST)差异是量化随机对照试验中治疗效果的一种具有临床意义的指标,尤其在比例风险假设不成立时。现有多种频率学方法基于建模和积分生存函数来估计校正协变量后的RMST。一种更自然的方法可能是使用伪观测值对RMST建立回归模型,该方法无需对生存函数建模即可直接进行估计。目前贝叶斯方法较少,且均需建立生存函数模型。我们开发了一种新的贝叶斯方法,将伪观测值与广义矩估计法相结合。该方法无需对生存函数建模即可实现校正协变量的RMST估计,相比现有贝叶斯方法更具优势。通过模拟研究,我们考察了不同时间依赖性治疗效果(早期、延迟及交叉生存)和协变量效应,结果表明:我们的方法能提供有效结果,与现有方法结果一致,且在协变量校正后显示出更高的精确度。为说明方法的应用,我们将其应用于一项前列腺癌III期试验,获得了与现有方法可比的RMST治疗效果估计值。此外,我们的方法还能提供其他协变量对RMST的影响,并确定任意协变量对应的RMST差异超过给定时间阈值的后验概率,从而获得更细致且可解释的结果。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员