Zero-shot detection methods for AI-generated text typically aggregate token-level statistics across entire sequences, overlooking the temporal dynamics inherent to autoregressive generation. We analyze over 120k text samples and reveal Late-Stage Volatility Decay: AI-generated text exhibits rapidly stabilizing log probability fluctuations as generation progresses, while human writing maintains higher variability throughout. This divergence peaks in the second half of sequences, where AI-generated text shows 24--32\% lower volatility. Based on this finding, we propose two simple features: Derivative Dispersion and Local Volatility, which computed exclusively from late-stage statistics. Without perturbation sampling or additional model access, our method achieves state-of-the-art performance on EvoBench and MAGE benchmarks and demonstrates strong complementarity with existing global methods.


翻译:AI生成文本的零样本检测方法通常在整个序列上聚合词元级统计量,忽略了自回归生成固有的时间动态特性。我们分析了超过12万个文本样本,揭示了晚期波动性衰减现象:随着生成过程的推进,AI生成文本的对数概率波动会迅速趋于稳定,而人类写作则始终保持较高的变异性。这种差异在序列的后半段达到峰值,其中AI生成文本的波动性降低了24%至32%。基于这一发现,我们提出了两个简单特征:导数离散度和局部波动性,这两个特征仅通过晚期统计量计算得出。无需扰动采样或额外模型访问,我们的方法在EvoBench和MAGE基准测试中实现了最先进的性能,并展现出与现有全局方法的强大互补性。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员