We prove that the norm of a $d$-dimensional L\'evy process possesses a finite second moment if and only if the convex distance between an appropriately rescaled process at time $t$ and a standard Gaussian vector is integrable in time with respect to the scale-invariant measure $t^{-1} dt$ on $[1,\infty)$. We further prove that under the standard $\sqrt{t}$-scaling, the corresponding convex distance is integrable if and only if the norm of the L\'evy process has a finite $(2+\log)$-moment. Both equivalences also hold for the integrability with respect to $t^{-1} dt$ of the multivariate Kolmogorov distance. Our results imply: (I) polynomial Berry-Esseen bounds on the rate of convergence in the convex distance in the CLT for L\'evy processes cannot hold without finiteness of $(2+\delta)$-moments for some $\delta>0$ and (II) integrability of the convex distance with respect to $t^{-1} dt$ in the domain of non-normal attraction cannot occur for any scaling function.


翻译:我们证明,当且仅当经过适当尺度调整后的$d$维Lévy过程在时刻$t$与标准高斯向量的凸距离关于尺度不变测度$t^{-1} dt$在$[1,\infty)$上可积时,该Lévy过程的范数具有有限二阶矩。进一步证明,在标准$\sqrt{t}$尺度调整下,相应的凸距离可积当且仅当该Lévy过程的范数具有有限$(2+\log)$阶矩。这两个等价关系对多元Kolmogorov距离关于$t^{-1} dt$的可积性同样成立。我们的结果意味着:(I) 对于Lévy过程中心极限定理中凸距离收敛速率的多项式Berry-Esseen界,若不对某个$\delta>0$要求$(2+\delta)$阶矩有限性则不可能成立;(II) 在非正态吸引域中,无论采用何种尺度函数,凸距离关于$t^{-1} dt$的可积性都不可能发生。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
Augmentation for small object detection
Arxiv
13+阅读 · 2019年2月19日
VIP会员
相关VIP内容
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员