High-dimensional linear contextual bandit problems remain a significant challenge due to the curse of dimensionality. Existing methods typically consider either the model parameters to be sparse or the eigenvalues of context covariance matrices to be (approximately) sparse, lacking general applicability due to the rigidity of conventional reward estimators. To overcome this limitation, a powerful pointwise estimator is introduced in this work that adaptively navigates both kinds of sparsity. Based on this pointwise estimator, a novel algorithm, termed HOPE, is proposed. Theoretical analyses demonstrate that HOPE not only achieves improved regret bounds in previously discussed homogeneous settings (i.e., considering only one type of sparsity) but also, for the first time, efficiently handles two new challenging heterogeneous settings (i.e., considering a mixture of two types of sparsity), highlighting its flexibility and generality. Experiments corroborate the superiority of HOPE over existing methods across various scenarios.


翻译:高维线性上下文赌博机问题因维度灾难而持续面临重大挑战。现有方法通常假设模型参数稀疏或上下文协方差矩阵的特征值(近似)稀疏,由于传统奖励估计器的刚性,这些方法缺乏普适性。为克服这一限制,本文引入了一种强大的逐点估计器,能够自适应地导航两种稀疏性。基于此逐点估计器,我们提出了一种新算法,命名为HOPE。理论分析表明,HOPE不仅在先前讨论的同质设置(即仅考虑一种稀疏性)中实现了改进的遗憾界,而且首次高效处理了两种新的挑战性异质设置(即考虑两种稀疏性的混合),凸显了其灵活性与普适性。实验证实了HOPE在各种场景下优于现有方法的性能。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员