This report outlines the objectives, methodology, challenges, and results of the first Fuzzing Competition held at SBFT 2023. The competition utilized FuzzBench to assess the code-coverage performance and bug-finding efficacy of eight participating fuzzers over 23 hours. The competition was organized in three phases. In the first phase, participants were asked to integrate their fuzzers into FuzzBench and allowed them to privately run local experiments against the publicly available benchmarks. In the second phase, we publicly ran all submitted fuzzers on the publicly available benchmarks and allowed participants to fix any remaining bugs in their fuzzers. In the third phase, we publicly ran all submitted fuzzers plus three widely-used baseline fuzzers on a hidden set and the publicly available set of benchmark programs to establish the final results.


翻译:本篇报告概述了在 SBFT 2023 上举办的首个 Fuzzing 竞赛的目标、方法、挑战和结果。竞赛利用 FuzzBench 在 23 小时内评估了八个参赛 fuzzers 的代码覆盖率性能和漏洞发现能力。竞赛分三个阶段组织。在第一个阶段中,参赛者被要求将他们的 fuzzers 集成到 FuzzBench 中,并允许他们针对公开可用的基准进行本地私人实验。在第二个阶段中,我们公开运行了所有提交的 fuzzers 在公开可用基准上,并允许参赛者修复其fuzzers中仍存在的任何漏洞。在第三个阶段中,我们在一个隐藏集和公开可用的基准程序集上公开运行了所有提交的 fuzzers 加上三个广泛使用的基准 fuzzers,以确定最终结果。

1
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
1+阅读 · 2023年6月5日
Arxiv
0+阅读 · 2023年6月4日
Arxiv
0+阅读 · 2023年6月1日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【数据集】新的YELP数据集官方下载
机器学习研究会
16+阅读 · 2017年8月31日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员