We develop two complementary generative mechanisms that explain when and why Benford's first-digit law arises. First, a probabilistic Turing machine (PTM) ensemble induces a geometric law for codelength. Maximizing its entropy under a constraint on halting length yields Benford statistics. This model shows a phase transition with respect to the halt probability. Second, a constrained partition model (Einstein-solid combinatorics) recovers the same logarithmic profile as the maximum-entropy solution under a coarse-grained entropy-rate constraint, clarifying the role of non-ergodicity (ensemble vs. trajectory averages). We also perform numerical experiments that corroborate our conclusions.


翻译:我们提出了两种互补的生成机制,用以解释本福特定律(首位数字定律)在何种条件下及为何会出现。首先,概率图灵机(PTM)系综导出了编码长度的几何分布规律。在给定停机长度约束条件下最大化其熵值,即可推导出本福特统计特性。该模型揭示了关于停机概率的相变现象。其次,通过受约束的分割模型(爱因斯坦固体组合模型)在粗粒度熵率约束下,得到了与最大熵解相同的对数分布特征,从而阐明了非遍历性(系综平均与轨迹平均的差异)所起的作用。我们还通过数值实验验证了所得结论。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员