Point-based Differentiable Rendering (PBDR) enables high-fidelity 3D scene reconstruction, but scaling PBDR to high-resolution and large scenes requires efficient distributed training systems. Existing systems are tightly coupled to a specific PBDR method. And they suffer from severe communication overhead due to poor data locality. In this paper, we present Gaian, a general distributed training system for PBDR. Gaian provides a unified API expressive enough to support existing PBDR methods, while exposing rich data-access information, which Gaian leverages to optimize locality and reduce communication. We evaluated Gaian by implementing 4 PBDR algorithms. Our implementations achieve high performance and resource efficiency: across six datasets and up to 128 GPUs, it reduces communication by up to 91% and improves training throughput by 1.50x-3.71x.


翻译:基于点云的可微分渲染(PBDR)能够实现高保真度的三维场景重建,但将PBDR扩展至高分辨率和大规模场景需要高效的分布式训练系统。现有系统与特定的PBDR方法紧密耦合,且由于数据局部性差而存在严重的通信开销。本文提出Gaian,一个用于PBDR的通用分布式训练系统。Gaian提供了一个表达能力足够强的统一API,足以支持现有的PBDR方法,同时暴露丰富的数据访问信息,Gaian利用这些信息来优化局部性并减少通信。我们通过实现4种PBDR算法对Gaian进行了评估。我们的实现实现了高性能和资源效率:在六个数据集上,使用多达128个GPU时,通信量减少了高达91%,训练吞吐量提高了1.50倍至3.71倍。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
【CVPR2024】ViewDiff: 3D一致的图像生成与文本到图像模型
专知会员服务
30+阅读 · 2024年3月10日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员