Sequential recommendation is to predict the next item of interest for a user, based on her/his interaction history with previous items. In conventional sequential recommenders, a common approach is to model item sequences using discrete IDs, learning representations that encode sequential behaviors and reflect user preferences. Inspired by recent success in empowering large language models (LLMs) to understand and reason over diverse modality data (e.g., image, audio, 3D points), a compelling research question arises: ``Can LLMs understand and work with hidden representations from ID-based sequential recommenders?''.To answer this, we propose a simple framework, RecInterpreter, which examines the capacity of open-source LLMs to decipher the representation space of sequential recommenders. Specifically, with the multimodal pairs (\ie representations of interaction sequence and text narrations), RecInterpreter first uses a lightweight adapter to map the representations into the token embedding space of the LLM. Subsequently, it constructs a sequence-recovery prompt that encourages the LLM to generate textual descriptions for items within the interaction sequence. Taking a step further, we propose a sequence-residual prompt instead, which guides the LLM in identifying the residual item by contrasting the representations before and after integrating this residual into the existing sequence. Empirical results showcase that our RecInterpreter enhances the exemplar LLM, LLaMA, to understand hidden representations from ID-based sequential recommenders, especially when guided by our sequence-residual prompts. Furthermore, RecInterpreter enables LLaMA to instantiate the oracle items generated by generative recommenders like DreamRec, concreting the item a user would ideally like to interact with next. Codes are available at https://github.com/YangZhengyi98/RecInterpreter.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员