Quantum databases open an exciting new frontier in data management by offering privacy guarantees that classical systems cannot match. Traditional engines tackle user privacy, which hides the records being queried, or data privacy, which prevents a user from learning more than she has queried. We propose a quantum database that protects both by leveraging quantum mechanics: when the user measures her chosen basis, the superposition collapses and the unqueried rows become physically inaccessible. We encode relational tables as a sequence of Quantum Random Access Codes (QRACs) over mutually unbiased bases (MUBs), transmit a bounded number of quantum states, and let a single, destructive measurement reconstruct only the selected tuple. This allows us to preserve data privacy and user privacy at once without trusted hardware or heavyweight cryptography. Moreover, we envision a novel hybrid quantum-classical architecture ready for early deployment, which ensures compatibility with the limitations of today's Noisy Intermediate-Scale Quantum devices.


翻译:量子数据库通过提供经典系统无法比拟的隐私保障,为数据管理开辟了一个令人兴奋的新前沿。传统引擎要么处理用户隐私(即隐藏被查询的记录),要么处理数据隐私(即防止用户获取超出其查询范围的信息)。我们提出了一种利用量子力学同时保护两者的量子数据库:当用户测量其选定的基时,叠加态坍缩,未查询的行在物理上变得不可访问。我们将关系表编码为一系列基于相互无偏基的量子随机访问码,传输有限数量的量子态,并通过一次破坏性测量仅重构选定的元组。这使得我们无需可信硬件或重量级密码学即可同时保护数据隐私和用户隐私。此外,我们设想了一种适合早期部署的新型混合量子-经典架构,确保与当前含噪声中等规模量子设备的限制兼容。

0
下载
关闭预览

相关内容

《工程》是中国工程院(CAE)于2015年推出的国际开放存取期刊。其目的是提供一个高水平的平台,传播和分享工程研发的前沿进展、当前主要研究成果和关键成果;报告工程科学的进展,讨论工程发展的热点、兴趣领域、挑战和前景,在工程中考虑人与环境的福祉和伦理道德,鼓励具有深远经济和社会意义的工程突破和创新,使之达到国际先进水平,成为新的生产力,从而改变世界,造福人类,创造新的未来。 期刊链接:https://www.sciencedirect.com/journal/engineering
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
11+阅读 · 2019年4月15日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
29+阅读 · 2017年12月6日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
11+阅读 · 2019年4月15日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
29+阅读 · 2017年12月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员