We study the parameter complexity of robust memorization for $\mathrm{ReLU}$ networks: the number of parameters required to interpolate any given dataset with $\epsilon$-separation between differently labeled points, while ensuring predictions remain consistent within a $\mu$-ball around each training sample. We establish upper and lower bounds on the parameter count as a function of the robustness ratio $\rho = \mu / \epsilon$. Unlike prior work, we provide a fine-grained analysis across the entire range $\rho \in (0,1)$ and obtain tighter upper and lower bounds that improve upon existing results. Our findings reveal that the parameter complexity of robust memorization matches that of non-robust memorization when $\rho$ is small, but grows with increasing $\rho$.


翻译:我们研究了ReLU网络鲁棒记忆的参数复杂度:即在确保每个训练样本周围μ球内预测保持一致的条件下,以ε间隔区分不同标签点的方式插值任意给定数据集所需的参数数量。我们建立了参数数量关于鲁棒比ρ = μ/ε的函数的上界和下界。与先前工作不同,我们对整个范围ρ ∈ (0,1)进行了细粒度分析,获得了比现有结果更紧的上界和下界。我们的研究结果表明,当ρ较小时,鲁棒记忆的参数复杂度与非鲁棒记忆相当,但随着ρ增大而增长。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员