Virtual humans play a pivotal role in social virtual environments, shaping users' VR experiences. The diversity in available options and users' preferences can result in a heterogeneous mix of appearances among a group of virtual humans. The resulting variety in higher-order anthropomorphic and realistic cues introduces multiple (in)congruencies, eventually impacting the plausibility of the experience. In this work, we consider the impact of (in)congruencies in the realism of a group of virtual humans, including co-located others and one's self-avatar. In a 2 x 3 mixed design, participants embodied either (1) a personalized realistic or (2) a customized stylized self-avatar across three consecutive VR exposures in which they were accompanied by a group of virtual others being either (1) all realistic, (2) all stylized, or (3) mixed. Our results indicate groups of virtual others of higher realism, i.e., potentially more congruent with participants' real-world experiences and expectations, were considered more human-like, increasing the feeling of co-presence and the impression of interaction possibilities. (In)congruencies concerning the homogeneity of the group did not cause considerable effects. Furthermore, our results indicate that a self-avatar's congruence with the participant's real-world experiences concerning their own physical body yielded notable benefits for virtual body ownership and self-identification for realistic personalized avatars. Notably, the incongruence between a stylized self-avatar and a group of realistic virtual others resulted in diminished ratings of self-location and self-identification. We conclude on the implications of our findings and discuss our results within current theories of VR experiences, considering (in)congruent visual cues and their impact on the perception of virtual others, self-representation, and spatial presence.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员