To assess the potential of wind energy in a specific area, statistical distribution functions are commonly used to characterize wind speed distributions. The selection of an appropriate wind speed model is crucial in minimizing wind power estimation errors. In this paper, we propose a novel method that utilizes the T-X family of continuous distributions to generate two new wind speed distribution functions, which have not been previously explored in the wind energy literature. These two statistical distributions, namely the Weibull-three parameters-log-logistic (WE3-LL3) and log-logistic-three parameters-Weibull (LL3-WE3) are compared with four other probability density functions (PDFs) to analyze wind speed data collected in Tabriz, Iran. The parameters of the considered distributions are estimated using maximum likelihood estimators with the Nelder-Mead numerical method. The suitability of the proposed distributions for the actual wind speed data is evaluated based on criteria such as root mean square errors, coefficient of determination, Kolmogorov-Smirnov test, and chi-square test. The analysis results indicate that the LL3-WE3 distribution demonstrates generally superior performance in capturing seasonal and annual wind speed data, except for summer, while the WE3-LL3 distribution exhibits the best fit for summer. It is also observed that both the LL3-WE3 and WE3-LL3 distributions effectively describe wind speed data in terms of the wind power density error criterion. Overall, the LL3-WE3 and WE3-LL3 models offer a highly accurate fit compared to other PDFs for estimating wind energy potential.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员