Non-local games are a powerful tool to distinguish between correlations possible in classical and quantum worlds. Kalai et al. (STOC'23) proposed a compiler that converts multipartite non-local games into interactive protocols with a single prover, relying on cryptographic tools to remove the assumption of physical separation of the players. While quantum completeness and classical soundness of the construction have been established for all multipartite games, quantum soundness is known only in the special case of bipartite games. In this paper, we prove that the Kalai et al.'s compiler indeed achieves quantum soundness for all multipartite compiled non-local games, by showing that any correlations that can be generated in the asymptotic case correspond to quantum commuting strategies. Our proof uses techniques from the theory of operator algebras, and relies on a characterisation of sequential operationally no-signalling strategies as quantum commuting operator strategies in the multipartite case, thereby generalising several previous results. On the way, we construct universal C*-algebras of sequential PVMs and prove a new chain rule for Radon-Nikodym derivatives of completely positive maps on C*-algebras which may be of independent interest.


翻译:非局域游戏是区分经典世界与量子世界中可能关联的有力工具。Kalai等人(STOC'23)提出了一种编译器,可将多方非局域游戏转化为与单一证明者的交互式协议,其通过密码学工具消除了参与者物理分离的假设。虽然该构造对所有多方游戏已证明具有量子完备性与经典可靠性,但量子可靠性仅在双方游戏的特例中已知。本文通过证明渐近情形下可生成的任何关联均对应于量子交换策略,证实了Kalai等人的编译器确实对所有多方编译非局域游戏实现了量子可靠性。我们的证明运用了算子代数理论的技术,并依赖于将多方情形下的序列操作无信号策略刻画为量子交换算子策略,从而推广了若干先前结果。在此过程中,我们构建了序列投影值测度的通用C*-代数,并证明了C*-代数上完全正映射的Radon-Nikodym导数的新链式法则,该结果可能具有独立的理论价值。

0
下载
关闭预览

相关内容

编译器(Compiler),是一种计算机程序,它会将用某种编程语言写成的源代码(原始语言),转换成另一种编程语言(目标语言)。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
12+阅读 · 2019年3月14日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员