The development of urban-air-mobility (UAM) is rapidly progressing with spurs, and the demand for efficient transportation management systems is a rising need due to the multifaceted environmental uncertainties. Thus, this paper proposes a novel air transportation service management algorithm based on multi-agent deep reinforcement learning (MADRL) to address the challenges of multi-UAM cooperation. Specifically, the proposed algorithm in this paper is based on communication network (CommNet) method utilizing centralized training and distributed execution (CTDE) in multiple UAMs for providing efficient air transportation services to passengers collaboratively. Furthermore, this paper adopts actual vertiport maps and UAM specifications for constructing realistic air transportation networks. By evaluating the performance of the proposed algorithm in data-intensive simulations, the results show that the proposed algorithm outperforms existing approaches in terms of air transportation service quality. Furthermore, there are no inferior UAMs by utilizing parameter sharing in CommNet and a centralized critic network in CTDE. Therefore, it can be confirmed that the research results in this paper can provide a promising solution for autonomous air transportation management systems in city-wide urban areas.


翻译:暂无翻译

0
下载
关闭预览

相关内容

清华大学智能产业研究院(AIR)招聘深度强化方向的本科/硕士/博士实习生,主要研究方向侧重前沿 offline RL/multi-agent RL 算法研究及转化落地。团队同时注重与行业头部企业密切协作,赋能相应产业,实现高水平的产学研转化。
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员