Over the last decade, graph neural networks (GNNs) have made significant progress in numerous graph machine learning tasks. In real-world applications, where domain shifts occur and labels are often unavailable for a new target domain, graph domain adaptation (GDA) approaches have been proposed to facilitate knowledge transfer from the source domain to the target domain. Previous efforts in tackling distribution shifts across domains have mainly focused on aligning the node embedding distributions generated by the GNNs in the source and target domains. However, as the core part of GDA approaches, the impact of the underlying GNN architecture has received limited attention. In this work, we explore this orthogonal direction, i.e., how to facilitate GDA with architectural enhancement. In particular, we consider a class of GNNs that are designed explicitly based on optimization problems, namely unfolded GNNs (UGNNs), whose training process can be represented as bi-level optimization. Empirical and theoretical analyses demonstrate that when transferring from the source domain to the target domain, the lower-level objective value generated by the UGNNs significantly increases, resulting in an increase in the upper-level objective as well. Motivated by this observation, we propose a simple yet effective strategy called cascaded propagation (CP), which is guaranteed to decrease the lower-level objective value. The CP strategy is widely applicable to general UGNNs, and we evaluate its efficacy with three representative UGNN architectures. Extensive experiments on five real-world datasets demonstrate that the UGNNs integrated with CP outperform state-of-the-art GDA baselines.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
29+阅读 · 2018年4月6日
Arxiv
22+阅读 · 2018年2月14日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
29+阅读 · 2018年4月6日
Arxiv
22+阅读 · 2018年2月14日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员