Image captioning (IC) systems aim to generate a text description of the salient objects in an image. In recent years, IC systems have been increasingly integrated into our daily lives, such as assistance for visually-impaired people and description generation in Microsoft Powerpoint. However, even the cutting-edge IC systems (e.g., Microsoft Azure Cognitive Services) and algorithms (e.g., OFA) could produce erroneous captions, leading to incorrect captioning of important objects, misunderstanding, and threats to personal safety. The existing testing approaches either fail to handle the complex form of IC system output (i.e., sentences in natural language) or generate unnatural images as test cases. To address these problems, we introduce Recursive Object MElting (Rome), a novel metamorphic testing approach for validating IC systems. Different from existing approaches that generate test cases by inserting objects, which easily make the generated images unnatural, Rome melts (i.e., remove and inpaint) objects. Rome assumes that the object set in the caption of an image includes the object set in the caption of a generated image after object melting. Given an image, Rome can recursively remove its objects to generate different pairs of images. We use Rome to test one widely-adopted image captioning API and four state-of-the-art (SOTA) algorithms. The results show that the test cases generated by Rome look much more natural than the SOTA IC testing approach and they achieve comparable naturalness to the original images. Meanwhile, by generating test pairs using 226 seed images, Rome reports a total of 9,121 erroneous issues with high precision (86.47%-92.17%). In addition, we further utilize the test cases generated by Rome to retrain the Oscar, which improves its performance across multiple evaluation metrics.


翻译:暂无翻译

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员