Hacker forums provide critical early warning signals for emerging cybersecurity threats, but extracting actionable intelligence from their unstructured and noisy content remains a significant challenge. This paper presents an unsupervised framework that automatically detects, clusters, and prioritizes security events discussed across hacker forum posts. Our approach leverages Transformer-based embeddings fine-tuned with contrastive learning to group related discussions into distinct security event clusters, identifying incidents like zero-day disclosures or malware releases without relying on predefined keywords. The framework incorporates a daily ranking mechanism that prioritizes identified events using quantifiable metrics reflecting timeliness, source credibility, information completeness, and relevance. Experimental evaluation on real-world hacker forum data demonstrates that our method effectively reduces noise and surfaces high-priority threats, enabling security analysts to mount proactive responses. By transforming disparate hacker forum discussions into structured, actionable intelligence, our work addresses fundamental challenges in automated threat detection and analysis.


翻译:黑客论坛为新兴网络安全威胁提供了关键的早期预警信号,但从其非结构化且充满噪声的内容中提取可操作情报仍是一项重大挑战。本文提出一种无监督框架,能够自动检测、聚类并优先处理黑客论坛帖子中讨论的安全事件。该方法利用基于Transformer的嵌入表示,并通过对比学习进行微调,将相关讨论分组为不同的安全事件聚类,从而识别零日漏洞披露或恶意软件发布等事件,而无需依赖预定义关键词。该框架整合了每日排序机制,使用反映时效性、来源可信度、信息完整性和相关性的可量化指标对识别出的事件进行优先级排序。在真实世界黑客论坛数据上的实验评估表明,我们的方法能有效降低噪声并凸显高优先级威胁,使安全分析师能够采取主动响应措施。通过将分散的黑客论坛讨论转化为结构化、可操作的情报,我们的工作解决了自动化威胁检测与分析中的根本性挑战。

0
下载
关闭预览

相关内容

黑客(Hacker,台湾译作「骇客」)广义上指在计算机科学,编程以及设计领域有高度理解力的人。 然而,人们通常对黑客一词的理解都是取其狭义的涵义,即信息安全领域的黑客: 未经许可入侵他人系统并窃取数据信息等的可以视为 黑帽黑客,也可取侩客 cracker 的涵义。
而主要从事安全检测,系统调试,技术研究的安全从业者可称为 白帽黑客
还有一种存在称为「脚本小子」,往往冒充黑客也常被人误认为是「黑客」,其实是利用一些现有的工具或者程序达到入侵或破解等目的,然而其知识储备以及对技术的理解力却完全不符合广义黑客的标准,甚至不及狭义黑客标准。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员