To obtain high-resolution images of subsurface structures from seismic data, seismic imaging techniques such as Full Waveform Inversion (FWI) serve as crucial tools. However, FWI involves solving a nonlinear and often non-unique inverse problem, presenting challenges such as local minima trapping and inadequate handling of inherent uncertainties. In addressing these challenges, we propose leveraging deep generative models as the prior distribution of geophysical parameters for stochastic Bayesian inversion. This approach integrates the adjoint state gradient for efficient back-propagation from the numerical solution of partial differential equations. Additionally, we introduce explicit and implicit variational Bayesian inference methods. The explicit method computes variational distribution density using a normalizing flow-based neural network, enabling computation of the Bayesian posterior of parameters. Conversely, the implicit method employs an inference network attached to a pretrained generative model to estimate density, incorporating an entropy estimator. Furthermore, we also experimented with the Stein Variational Gradient Descent (SVGD) method as another variational inference technique, using particles. We compare these variational Bayesian inference methods with conventional Markov chain Monte Carlo (McMC) sampling. Each method is able to quantify uncertainties and to generate seismic data-conditioned realizations of subsurface geophysical parameters. This framework provides insights into subsurface structures while accounting for inherent uncertainties.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Arxiv
69+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
Arxiv
12+阅读 · 2019年3月14日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员