We study contextual linear bandit problems under feature uncertainty; they are noisy with missing entries. To address the challenges of the noise, we analyze Bayesian oracles given observed noisy features. Our Bayesian analysis finds that the optimal hypothesis can be far from the underlying realizability function, depending on the noise characteristics, which are highly non-intuitive and do not occur for classical noiseless setups. This implies that classical approaches cannot guarantee a non-trivial regret bound. Therefore, we propose an algorithm that aims at the Bayesian oracle from observed information under this model, achieving $\tilde{O}(d\sqrt{T})$ regret bound when there is a large number of arms. We demonstrate the proposed algorithm using synthetic and real-world datasets.


翻译:注:英文中,“linear bandits”和“Bayesian oracles”两个词是固定术语,没有翻译。

0
下载
关闭预览

相关内容

干货书!基于单调算子的大规模凸优化,348页pdf
专知会员服务
50+阅读 · 2022年7月24日
专知会员服务
78+阅读 · 2021年3月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月11日
Arxiv
13+阅读 · 2021年3月29日
Arxiv
19+阅读 · 2021年2月4日
VIP会员
相关VIP内容
干货书!基于单调算子的大规模凸优化,348页pdf
专知会员服务
50+阅读 · 2022年7月24日
专知会员服务
78+阅读 · 2021年3月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关论文
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员