The normalized substring complexity $\delta$ of a string is defined as $\max_k \{c[k]/k\}$, where $c[k]$ is the number of \textit{distinct} substrings of length $k$. This simply defined measure has recently attracted attention due to its established relationship to popular string compression algorithms. We consider the problem of computing $\delta$ online, when the string is provided from a stream. We present two algorithms solving the problem: one working in $O(\log n)$ amortized time per character, and the other in $O(\log^3 n)$ worst-case time per character. To our knowledge, this is the first polylog-time online solution to this problem.


翻译:字符串的归一化子串复杂度 $\delta$ 定义为 $\max_k \{c[k]/k\}$,其中 $c[k]$ 表示长度为 $k$ 的\textit{互异}子串的数量。这一简洁定义的度量指标因其与主流字符串压缩算法之间的明确关系,近期受到广泛关注。本文研究在字符串以流形式提供时,在线计算 $\delta$ 的问题。我们提出了两种解决该问题的算法:一种算法在每个字符上的均摊时间复杂度为 $O(\log n)$,另一种算法在每个字符上的最坏时间复杂度为 $O(\log^3 n)$。据我们所知,这是该问题的首个多对数时间在线解决方案。

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Arxiv
69+阅读 · 2022年9月7日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员