Compositional graphoids are fundamental discrete structures which appear in probabilistic reasoning, particularly in the area of graphical models. They are semigraphoids which satisfy the Intersection and Composition properties. These important properties, however, are not enjoyed by general probability distributions. This paper surveys what is known about them, providing systematic constructions of examples and counterexamples as well as necessary and sufficient conditions. Novel sufficient conditions for both properties are derived in the context of discrete random variables via information-theoretic tools.


翻译:复合图状结构是概率推理领域(尤其是图模型方向)中基础性的离散结构,它们是满足交集性质与复合性质的半图状结构。然而,一般概率分布并不具备这些重要性质。本文系统综述了相关已知结论,通过信息论工具构建了系统的示例与反例,并给出了充分必要条件。针对离散随机变量,本文推导出了两类性质的新充分条件。

0
下载
关闭预览

相关内容

【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
自动结构变分推理,Automatic structured variational inference
专知会员服务
41+阅读 · 2020年2月10日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
Spark机器学习:矩阵及推荐算法
LibRec智能推荐
16+阅读 · 2017年8月3日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年12月30日
Arxiv
0+阅读 · 2025年12月23日
VIP会员
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
概率图模型体系:HMM、MEMM、CRF
机器学习研究会
30+阅读 · 2018年2月10日
Spark机器学习:矩阵及推荐算法
LibRec智能推荐
16+阅读 · 2017年8月3日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员