We study an envy-free pricing problem, in which each buyer wishes to buy a shortest path connecting her individual pair of vertices in a network owned by a single vendor. The vendor sets the prices of individual edges with the aim of maximizing the total revenue generated by all buyers. Each customer buys a path as long as its cost does not exceed her individual budget. In this case, the revenue generated by her equals the sum of prices of edges along this path. We consider the unlimited supply setting, where each edge can be sold to arbitrarily many customers. The problem is to find a price assignment which maximizes vendor's revenue. A special case in which the network is a tree is known under the name of the tollbooth problem. Gamzu and Segev proposed a $\mathcal{O} \left( \frac{\log m}{\log \log m} \right)$-approximation algorithm for revenue maximization in that setting. Note that paths in a tree network are unique, and hence the tollbooth problem falls under the category of single-minded bidders, i.e., each buyer is interested in a single fixed set of goods. In this work we step out of the single-minded setting and consider more general networks that may contain cycles. We obtain an algorithm for pricing cactus shaped networks, namely networks in which each edge can belong to at most one simple cycle. Our result is a polynomial time $\mathcal{0} \left( \frac{\log m}{\log \log m}\right)$-approximation algorithm for revenue maximization in tollbooth pricing on a cactus graph. It builds upon the framework of Gamzu and Segev, but requires substantially extending its main ideas: the recursive decomposition of the graph, the dynamic programming for rooted instances and rounding the prices.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员