Deep models in industrial applications rely on thousands of features for accurate predictions, such as deep recommendation systems. While new features are introduced to capture evolving user behavior, outdated or redundant features often remain, significantly increasing storage and computational costs. To address this issue, feature selection methods are widely adopted to identify and remove less important features. However, existing approaches face two major challenges: (1) they often require complex hyperparameter (Hp) tuning, making them difficult to employ in practice, and (2) they fail to produce well-separated feature importance scores, which complicates straightforward feature removal. Moreover, the impact of removing unimportant features can only be evaluated through retraining the model, a time-consuming and resource-intensive process that severely hinders efficient feature selection. To solve these challenges, we propose a novel feature selection approach, ShuffleGate. In particular, it shuffles all feature values across instances simultaneously and uses a gating mechanism that allows the model to dynamically learn the weights for combining the original and shuffled inputs. Notably, it can generate well-separated feature importance scores and estimate the performance without retraining the model, while introducing only a single Hp. Experiments on four public datasets show that our approach outperforms state-of-the-art methods in feature selection for model retraining. Moreover, it has been successfully integrated into the daily iteration of Bilibili's search models across various scenarios, where it significantly reduces feature set size (up to 60%+) and computational resource usage (up to 20%+), while maintaining comparable performance.


翻译:工业应用中的深度模型(如深度推荐系统)依赖数千个特征以实现精准预测。尽管引入新特征以捕捉不断演变的用户行为,但过时或冗余的特征往往被保留,显著增加了存储与计算成本。为应对此问题,特征选择方法被广泛采用以识别并移除次要特征。然而,现有方法面临两大挑战:(1)通常需要复杂的超参数调优,导致实际部署困难;(2)无法生成区分度良好的特征重要性分数,使得直接移除特征变得复杂。此外,移除非重要特征的影响只能通过重新训练模型来评估,这一过程耗时且资源密集,严重阻碍了高效特征选择。为解决这些挑战,我们提出一种新颖的特征选择方法ShuffleGate。该方法通过同时打乱所有样本的特征值,并采用门控机制使模型动态学习原始输入与打乱后输入的组合权重。值得注意的是,该方法能够生成区分度良好的特征重要性分数,并在无需重新训练模型的情况下评估性能,同时仅引入单个超参数。在四个公开数据集上的实验表明,本方法在模型重训练的特征选择任务中优于现有最优方法。此外,该方法已成功集成至Bilibili搜索模型在多场景下的日常迭代流程中,在保持可比性能的同时,显著减少了特征集规模(最高达60%以上)与计算资源消耗(最高达20%以上)。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员