There are various proposals for employing grass materials as a green landscape-friendly display. However, it is difficult for current techniques to display smooth animations using 8-bit images and to adjust display resolution, similar to conventional displays. We present ProgrammableGrass, an artificial grass display with scalable resolution, capable of swiftly controlling grass color at 8-bit levels. This grass display can control grass colors linearly at the 8-bit level, similar to an LCD display, and can also display not only 8-bit-based images but also videos. This display enables pixel-by-pixel color transitions from yellow to green using fixed-length yellow and adjustable-length green grass. We designed a grass module that can be connected to other modules. Utilizing a proportional derivative control, the grass colors are manipulated to display animations at approximately 10 [fps]. Since the relationship between grass lengths and colors is nonlinear, we developed a calibration system for ProgrammableGrass. We revealed that this calibration system allows ProgrammableGrass to linearly control grass colors at 8-bit levels through experiments under multiple conditions. Lastly, we demonstrate ProgrammableGrass to show smooth animations with 8-bit grayscale images. Moreover, we show several application examples to illustrate the potential of ProgrammableGrass. With the advancement of this technology, users will be able to treat grass as a green-based interactive display device.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员