We consider the problem of maximizing a fractionally subadditive function under a knapsack constraint that grows over time. An incremental solution to this problem is given by an order in which to include the elements of the ground set, and the competitive ratio of an incremental solution is defined by the worst ratio over all capacities relative to an optimum solution of the corresponding capacity. We present an algorithm that finds an incremental solution of competitive ratio at most $\max\{3.293\sqrt{M},2M\}$, under the assumption that the values of singleton sets are in the range $[1,M]$, and we give a lower bound of $\max\{2.449,M\}$ on the attainable competitive ratio. In addition, we establish that our framework captures potential-based flows between two vertices, and we give a tight bound of~$2$ for the incremental maximization of classical flows with unit capacities.


翻译:我们考虑的是在一个随时间演变的“背包”限制下最大限度地增加一个微小的子相加功能的问题。这个问题的逐步解决是通过一个包括地面组合要素的顺序来实现的,而递增解决方案的竞争性比率则由相对于相应能力的最佳解决办法而言,所有能力的最坏比率来界定。我们提出了一个算法,在假定单吨组合的值在$[$1,M]的范围内,并且我们对可实现的竞争比率给予较低的约束,即$\max$2.449,M$。此外,我们确定我们的框架能够捕捉两个顶端之间的潜在流动,并且我们为具有单位能力的经典流动的递增最大化提供了近2美元的紧凑界限。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
YOLOv3:An Incremental Improvement 全文翻译
极市平台
12+阅读 · 2018年3月28日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
YOLOv3:An Incremental Improvement 全文翻译
极市平台
12+阅读 · 2018年3月28日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员