Artificial intelligence (AI) is already driving scientific breakthroughs in a variety of research fields, ranging from the life sciences to mathematics. This raises a critical question: can AI be applied both responsibly and effectively to address complex and interconnected sustainability challenges? This report is the result of a collaboration between the Stockholm resilience Centre (Stockholm University), the Potsdam Institute for Climate Impact Research (PIK), and Google DeepMind. Our work explores the potential and limitations of using AI as a research method to help tackle eight broad sustainability challenges. The results build on iterated expert dialogues and assessments, a systematic AI-supported literature overview including over 8,500 academic publications, and expert deep-dives into eight specific issue areas. The report also includes recommendations to sustainability scientists, research funders, the private sector, and philanthropies.


翻译:人工智能(AI)已在从生命科学到数学等多个研究领域推动科学突破。这引发了一个关键问题:能否以负责任且高效的方式应用AI来解决复杂且相互关联的可持续发展挑战?本报告是斯德哥尔摩韧性中心(斯德哥尔摩大学)、波茨坦气候影响研究所(PIK)与Google DeepMind合作的成果。我们的工作探讨了将AI作为研究方法以应对八大可持续发展挑战的潜力与局限。研究结果基于迭代的专家对话与评估、涵盖超过8,500篇学术文献的系统性AI辅助文献综述,以及对八个具体议题领域的专家深度分析。报告还包含对可持续发展科学家、研究资助机构、私营部门及慈善组织的建议。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2024年4月16日
Arxiv
21+阅读 · 2022年12月20日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员