A popular approach for constructing bird's-eye-view (BEV) representation in 3D detection is to lift 2D image features onto the viewing frustum space based on explicitly predicted depth distribution. However, depth distribution can only characterize the 3D geometry of visible object surfaces but fails to capture their internal space and overall geometric structure, leading to sparse and unsatisfactory 3D representations. To mitigate this issue, we present BEV-IO, a new 3D detection paradigm to enhance BEV representation with instance occupancy information. At the core of our method is the newly-designed instance occupancy prediction (IOP) module, which aims to infer point-level occupancy status for each instance in the frustum space. To ensure training efficiency while maintaining representational flexibility, it is trained using the combination of both explicit and implicit supervision. With the predicted occupancy, we further design a geometry-aware feature propagation mechanism (GFP), which performs self-attention based on occupancy distribution along each ray in frustum and is able to enforce instance-level feature consistency. By integrating the IOP module with GFP mechanism, our BEV-IO detector is able to render highly informative 3D scene structures with more comprehensive BEV representations. Experimental results demonstrate that BEV-IO can outperform state-of-the-art methods while only adding a negligible increase in parameters (0.2%) and computational overhead (0.24%in GFLOPs).


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年7月10日
Arxiv
12+阅读 · 2019年1月24日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员