For Nakamoto's longest-chain consensus protocol, whose proof-of-work (PoW) and proof-of-stake (PoS) variants power major blockchains such as Bitcoin and Cardano, we revisit the classic problem of the security-performance tradeoff: Given a network of nodes with finite communication- and computation-resources, against what fraction of adversary power is Nakamoto consensus (NC) secure for a given block production rate? State-of-the-art analyses of NC fail to answer this question, because their bounded-delay model does not capture the rate limits to nodes' processing of blocks, which cause congestion when blocks are released in quick succession. We develop a new analysis technique to prove a refined security-performance tradeoff for PoW NC in a bounded-capacity model. In this model, we show that, in contrast to the classic bounded-delay model, Nakamoto's private attack is no longer the worst attack, and a new attack we call the teasing strategy, that exploits congestion, is strictly worse. In PoS, equivocating blocks can exacerbate congestion, making traditional PoS NC insecure except at very low block production rates. To counter such equivocation spamming, we present a variant of PoS NC we call Blanking NC (BlaNC), which achieves the same resilience as PoW NC.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
29+阅读 · 2023年2月10日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
14+阅读 · 2021年7月20日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
29+阅读 · 2023年2月10日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
76+阅读 · 2022年3月26日
Arxiv
14+阅读 · 2021年7月20日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员