Memory-centric computing aims to enable computation capability in and near all places where data is generated and stored. As such, it can greatly reduce the large negative performance and energy impact of data access and data movement, by fundamentally avoiding data movement and reducing data access latency & energy. Many recent studies show that memory-centric computing can greatly improve system performance and energy efficiency. Major industrial vendors and startup companies have also recently introduced memory chips that have sophisticated computation capabilities. This talk describes promising ongoing research and development efforts in memory-centric computing. We classify such efforts into two major fundamental categories: 1) processing using memory, which exploits analog operational properties of memory structures to perform massively-parallel operations in memory, and 2) processing near memory, which integrates processing capability in memory controllers, the logic layer of 3D-stacked memory technologies, or memory chips to enable high-bandwidth and low-latency memory access to near-memory logic. We show both types of architectures (and their combination) can enable orders of magnitude improvements in performance and energy consumption of many important workloads, such as graph analytics, databases, machine learning, video processing, climate modeling, genome analysis. We discuss adoption challenges for the memory-centric computing paradigm and conclude with some research & development opportunities.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
127+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
36+阅读 · 2019年11月7日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
127+阅读 · 2022年4月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员