Let $\mathcal{G}$ be a finite set of matrices in a unipotent matrix group $G$ over $\mathbb{Q}$, where $G$ has nilpotency class at most ten. We exhibit a polynomial time algorithm that computes the subset of $\mathcal{G}$ which generates the group of units of the semigroup $\langle\mathcal{G}\rangle$ generated by $\mathcal{G}$. In particular, this result shows that the Identity Problem (does $\langle\mathcal{G}\rangle$ contain the identity matrix?) and the Group Problem (is $\langle\mathcal{G}\rangle$ a group?) are decidable in polynomial time for unipotent matrix group of class at most ten. This extends the earlier work by Babai, Beals, Cai, Ivanyos and Luks on commutative matrix groups to nilpotent matrix groups. An important implication of our result is the decidability of the Identity Problem and the Group Problem within finitely generated nilpotent groups of class at most ten. Our main idea is to analyze the logarithm of the matrices appearing in $\langle\mathcal{G}\rangle$. This allows us to employ Lie algebra methods to study this semigroup. In particular, we prove several new properties of the Baker-Campbell-Hausdorff formula, which help us characterize the convex cone spanned by the elements in $\log \langle\mathcal{G}\rangle$. Furthermore, we formulate a sufficient condition in order for our results to generalize to unipotent matrix groups of class $d > 10$. For every such $d$, we exhibit an effective procedure that verifies this sufficient condition in case it is true.


翻译:让 $\ mathcal{ G} 美元 在一个单能的矩阵组 $G$+$\ mathbb+$, 其中$G$最多有10个无能等级。 我们展示了一个多元时间算法, 计算了 $mathcal{ G} $的子集, 产生由$\ mathcal{ G} 生成的半能集团的单位组。 特别是, 这个结果显示身份问题( $$\ langle\ mathal{ G_rangle$ 超过$\ gmax$, 其中, $G$G$ 最多有无能力类别。 将Babai、 Beals、 Cai、 Ivanyos 和 Lukes 在通訊矩阵组中生成的早期工作 。 我们的结果的一个重要影响是, 将这个卡数的卡度和 $$Gralx 的货币组结果, 将显示我们最难的货币组。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月22日
Arxiv
0+阅读 · 2022年11月22日
Arxiv
0+阅读 · 2022年11月21日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员