Unlearning is challenging in generic learning frameworks with the continuous growth and updates of models exhibiting complex inheritance relationships. This paper presents a novel unlearning framework that enables fully parallel unlearning among models exhibiting inheritance. We use a chronologically Directed Acyclic Graph (DAG) to capture various unlearning scenarios occurring in model inheritance networks. Central to our framework is the Fisher Inheritance Unlearning (FIUn) method, designed to enable efficient parallel unlearning within the DAG. FIUn utilizes the Fisher Information Matrix (FIM) to assess the significance of model parameters for unlearning tasks and adjusts them accordingly. To handle multiple unlearning requests simultaneously, we propose the Merging-FIM (MFIM) function, which consolidates FIMs from multiple upstream models into a unified matrix. This design supports all unlearning scenarios captured by the DAG, enabling one-shot removal of inherited knowledge while significantly reducing computational overhead. Experiments confirm the effectiveness of our unlearning framework. For single-class tasks, it achieves complete unlearning with 0% accuracy for unlearned labels while maintaining 94.53% accuracy for retained labels. For multi-class tasks, the accuracy is 1.07% for unlearned labels and 84.77% for retained labels. Our framework accelerates unlearning by 99% compared to alternative methods. Code is in https://github.com/MJLee00/Parallel-Unlearning-in-Inherited-Model-Networks.


翻译:在模型持续增长与更新且呈现复杂继承关系的通用学习框架中,遗忘学习具有挑战性。本文提出了一种新颖的遗忘学习框架,能够在具有继承关系的模型间实现完全并行遗忘。我们使用时序有向无环图(DAG)来捕捉模型继承网络中出现的各种遗忘场景。框架的核心是费舍尔继承遗忘(FIUn)方法,旨在实现DAG内的高效并行遗忘。FIUn利用费舍尔信息矩阵(FIM)评估模型参数对遗忘任务的重要性,并相应调整参数。为同时处理多个遗忘请求,我们提出合并FIM(MFIM)函数,将来自多个上游模型的FIM整合为统一矩阵。该设计支持DAG涵盖的所有遗忘场景,实现继承知识的一次性移除,同时显著降低计算开销。实验验证了本遗忘学习框架的有效性。在单类别任务中,对于遗忘标签实现了0%准确率的完全遗忘,同时保留标签的准确率保持在94.53%。在多类别任务中,遗忘标签的准确率为1.07%,保留标签的准确率为84.77%。与替代方法相比,本框架将遗忘学习速度提升了99%。代码位于https://github.com/MJLee00/Parallel-Unlearning-in-Inherited-Model-Networks。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
13+阅读 · 2019年4月9日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关VIP内容
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
23+阅读 · 2022年2月24日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
13+阅读 · 2019年4月9日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员