Autonomous Driving Systems (ADS) are safety-critical, where failures can be severe. While Metamorphic Testing (MT) is effective for fault detection in ADS, existing methods rely heavily on manual effort and lack automation. We present AutoMT, a multi-agent MT framework powered by Large Language Models (LLMs) that automates the extraction of Metamorphic Relations (MRs) from local traffic rules and the generation of valid follow-up test cases. AutoMT leverages LLMs to extract MRs from traffic rules in Gherkin syntax using a predefined ontology. A vision-language agent analyzes scenarios, and a search agent retrieves suitable MRs from a RAG-based database to generate follow-up cases via computer vision. Experiments show that AutoMT achieves up to 5 x higher test diversity in follow-up case generation compared to the best baseline (manual expert-defined MRs) in terms of validation rate, and detects up to 20.55% more behavioral violations. While manual MT relies on a fixed set of predefined rules, AutoMT automatically extracts diverse metamorphic relations that augment real-world datasets and help uncover corner cases often missed during in-field testing and data collection. Its modular architecture separating MR extraction, filtering, and test generation supports integration into industrial pipelines and potentially enables simulation-based testing to systematically cover underrepresented or safety-critical scenarios.


翻译:自动驾驶系统(ADS)属于安全关键系统,其故障可能造成严重后果。蜕变测试(MT)虽能有效检测ADS中的缺陷,但现有方法严重依赖人工且缺乏自动化。本文提出AutoMT,一种基于大语言模型(LLM)的多智能体蜕变测试框架,能够从本地交通规则中自动提取蜕变关系(MR)并生成有效的后续测试用例。AutoMT利用LLM通过预定义本体从Gherkin语法描述的交通规则中提取MR。视觉-语言智能体分析场景,搜索智能体从基于RAG的数据库中检索合适的MR,并通过计算机视觉生成后续用例。实验表明,在验证率指标上,AutoMT生成的后续测试用例多样性较最佳基线方法(人工专家定义的MR)提升高达5倍,且多检测出20.55%的行为违规。传统人工蜕变测试依赖固定预定义规则集,而AutoMT能自动提取多样化的蜕变关系,这些关系可增强现实数据集,并有助于发现现场测试与数据收集中常被遗漏的边界情况。其模块化架构将MR提取、筛选与测试生成相分离,支持集成至工业流水线,并有望通过基于仿真的测试系统性地覆盖低代表性或安全关键场景。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员