Despite quick progress in the last few years, recent studies have shown that modern graph neural networks can still fail at very simple tasks, like detecting small cycles. This hints at the fact that current networks fail to catch information about the local structure, which is problematic if the downstream task heavily relies on graph substructure analysis, as in the context of chemistry. We propose a very simple correction to the now standard GIN convolution that enables the network to detect small cycles with nearly no cost in terms of computation time and number of parameters. Tested on real life molecule property datasets, our model consistently improves performance on large multi-tasked datasets over all baselines, both globally and on a per-task setting.


翻译:尽管在过去几年中取得了快速进展,但最近的研究表明,现代图形神经网络仍然可以在非常简单的任务上失败,比如探测小循环。这暗示了当前网络无法掌握当地结构的信息,如果下游任务严重依赖图形子结构分析(如化学方面),则问题在于当地结构的信息。我们建议对目前标准的GIN演动进行非常简单的修正,使网络能够检测小周期,而计算时间和参数数量几乎不花费成本。通过实际生命分子财产数据集测试,我们的模型不断改进全球和每个任务设置所有基线上大型多任务数据集的性能。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
一文读懂图卷积GCN
计算机视觉life
21+阅读 · 2019年12月21日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
9+阅读 · 2018年5月24日
VIP会员
相关资讯
一文读懂图卷积GCN
计算机视觉life
21+阅读 · 2019年12月21日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员