For overparameterized optimization tasks, such as those found in modern machine learning, global minima are generally not unique. In order to understand generalization in these settings, it is vital to study to which minimum an optimization algorithm converges. The possibility of having minima that are unstable under the dynamics imposed by the optimization algorithm limits the potential minima that the algorithm can find. In this paper, we characterize the global minima that are dynamically stable/unstable for both deterministic and stochastic gradient descent (SGD). In particular, we introduce a characteristic Lyapunov exponent that depends on the local dynamics around a global minimum and rigorously prove that the sign of this Lyapunov exponent determines whether SGD can accumulate at the respective global minimum.


翻译:对于现代机器学习中的过参数化优化任务,全局最小值通常不唯一。为理解此类场景下的泛化性能,研究优化算法收敛至何种最小值至关重要。在优化算法所施加的动态下,存在不稳定最小值的可能性限制了算法可能找到的潜在最小值。本文刻画了确定性梯度下降与随机梯度下降(SGD)中动态稳定/不稳定的全局最小值。特别地,我们引入了一个依赖于全局最小值局部动态的特征李雅普诺夫指数,并严格证明了该指数的符号决定了SGD是否能在相应全局最小值处累积。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员