G-formula is a popular approach for estimating treatment or exposure effects from longitudinal data that are subject to time-varying confounding. G-formula estimation is typically performed by Monte-Carlo simulation, with non-parametric bootstrapping used for inference. We show that G-formula can be implemented by exploiting existing methods for multiple imputation (MI) for synthetic data. This involves using an existing modified version of Rubin's variance estimator. In practice missing data is ubiquitous in longitudinal datasets. We show that such missing data can be readily accommodated as part of the MI procedure, and describe how MI software can be used to implement the approach. We explore its performance using a simulation study.


翻译:G-公式是一种常用的方法,用于估计从具有时间差异的纵向数据中产生的处理或接触影响。G-公式估计通常由Monte-Carlo模拟进行,使用非参数式的靴子进行推理。我们表明,G-公式可以通过利用现有的多种估算方法(MI)来实施,这涉及使用Rubin差异测算器的现有修改版本。实际上,缺失的数据在纵向数据集中是无处不在的。我们表明,这种缺失的数据可以很容易地作为MI程序的一部分被吸收,并描述如何使用MI软件实施这一方法。我们用模拟研究来探索其性能。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月21日
Arxiv
0+阅读 · 2023年3月21日
Arxiv
15+阅读 · 2020年12月17日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员