Decision trees are a classic model for summarizing and classifying data. To enhance interpretability and generalization properties, it has been proposed to favor small decision trees. Accordingly, in the minimum-size decision tree training problem (MSDT), the input is a set of training examples in $\mathbb{R}^d$ with class labels and we aim to find a decision tree that classifies all training examples correctly and has a minimum number of nodes. MSDT is NP-hard and therefore presumably not solvable in polynomial time. Nevertheless, Komusiewicz et al. [ICML '23] developed a promising algorithmic paradigm called witness trees which solves MSDT efficiently if the solution tree is small. In this work, we test this paradigm empirically. We provide an implementation, augment it with extensive heuristic improvements, and scrutinize it on standard benchmark instances. The augmentations achieve a mean 324-fold (median 84-fold) speedup over the naive implementation. Compared to the state of the art they achieve a mean 32-fold (median 7-fold) speedup over the dynamic programming based MurTree solver [Demirovi\'c et al., J. Mach. Learn. Res. '22] and a mean 61-fold (median 25-fold) speedup over SAT-based implementations [Janota and Morgado, SAT '20]. As a theoretical result we obtain an improved worst-case running-time bound for MSDT.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员