Language is highly structured, with syntactic and semantic structures, to some extent, agreed upon by speakers of the same language. With implicit or explicit awareness of such structures, humans can learn and use language efficiently and generalize to sentences that contain unseen words. Motivated by human language learning, in this dissertation, we consider a family of machine learning tasks that aim to learn language structures through grounding. We seek distant supervision from other data sources (i.e., grounds), including but not limited to other modalities (e.g., vision), execution results of programs, and other languages. We demonstrate the potential of this task formulation and advocate for its adoption through three schemes. In Part I, we consider learning syntactic parses through visual grounding. We propose the task of visually grounded grammar induction, present the first models to induce syntactic structures from visually grounded text and speech, and find that the visual grounding signals can help improve the parsing quality over language-only models. As a side contribution, we propose a novel evaluation metric that enables the evaluation of speech parsing without text or automatic speech recognition systems involved. In Part II, we propose two execution-aware methods to map sentences into corresponding semantic structures (i.e., programs), significantly improving compositional generalization and few-shot program synthesis. In Part III, we propose methods that learn language structures from annotations in other languages. Specifically, we propose a method that sets a new state of the art on cross-lingual word alignment. We then leverage the learned word alignments to improve the performance of zero-shot cross-lingual dependency parsing, by proposing a novel substructure-based projection method that preserves structural knowledge learned from the source language.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2023年5月22日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
12+阅读 · 2023年5月22日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
13+阅读 · 2019年11月14日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员