In this paper, we propose a probabilistic algorithm suitable for any linear code $C$ to determine whether a given vector $\mathbf{x}$ belongs to $ C$. The algorithm achieves $O(n\log n)$ time complexity, $ O(n^2)$ space complexity and with an error probability less than $1/\mathrm{poly}(n)$ in the asymptotic sense.


翻译:本文提出了一种适用于任意线性码$C$的概率算法,用于判定给定向量$\mathbf{x}$是否属于$C$。该算法的时间复杂度为$O(n\log n)$,空间复杂度为$O(n^2)$,且渐近意义上的错误概率小于$1/\mathrm{poly}(n)$。

0
下载
关闭预览

相关内容

本话题关于日常用语「概率」,用于讨论生活中的运气、机会,及赌博、彩票、游戏中的「技巧」。关于抽象数学概念「概率」的讨论,请转 概率(数学)话题。
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
详解常见的损失函数
七月在线实验室
20+阅读 · 2018年7月12日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员