We consider the problem of reverse channel coding, that is, how to simulate a noisy channel over a digital channel efficiently. We propose two new coding schemes with practical advantages over previous approaches. First, we introduce ordered random coding (ORC) which uses a simple trick to reduce the coding cost of previous approaches based on importance sampling. Our derivation also illuminates a connection between these schemes and the so-called Poisson functional representation. Second, we describe a hybrid coding scheme which uses dithered quantization to efficiently communicate samples from distributions with bounded support.


翻译:我们考虑反向通道编码问题,即如何在数字频道上高效率地模拟噪音频道。我们提出了两个与以往方法相比具有实际优势的新编码办法。首先,我们引入了有顺序的随机编码(ORC),它使用简单的技巧来降低基于重要取样的先前方法的编码成本。我们的推算还揭示了这些办法与所谓的Poisson功能代表之间的关联。第二,我们描述了一种混合编码办法,它利用抖动的定量来有效交流在受约束支持的情况下分布的样本。

0
下载
关闭预览

相关内容

Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Arxiv
36+阅读 · 2019年11月7日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员