We introduce RealmDreamer, a technique for generating forward-facing 3D scenes from text descriptions. Our method optimizes a 3D Gaussian Splatting representation to match complex text prompts using pretrained diffusion models. Our key insight is to leverage 2D inpainting diffusion models conditioned on an initial scene estimate to provide low variance supervision for unknown regions during 3D distillation. In conjunction, we imbue high-fidelity geometry with geometric distillation from a depth diffusion model, conditioned on samples from the inpainting model. We find that the initialization of the optimization is crucial, and provide a principled methodology for doing so. Notably, our technique doesn't require video or multi-view data and can synthesize various high-quality 3D scenes in different styles with complex layouts. Further, the generality of our method allows 3D synthesis from a single image. As measured by a comprehensive user study, our method outperforms all existing approaches, preferred by 88-95%. Project Page: https://realmdreamer.github.io/


翻译:本文提出RealmDreamer技术,用于从文本描述生成前向三维场景。该方法通过预训练扩散模型优化三维高斯泼溅表示,以匹配复杂文本提示。我们的核心洞见在于:利用基于初始场景估计的二维修复扩散模型,为三维蒸馏过程中的未知区域提供低方差监督。同时,我们通过深度扩散模型的几何蒸馏注入高保真几何信息,该深度模型以修复模型的采样结果为条件。研究发现优化初始化至关重要,并为此提出了系统化方法论。值得注意的是,该技术无需视频或多视角数据,即可合成具有复杂布局、多种风格的高质量三维场景。此外,本方法的通用性支持从单张图像进行三维合成。根据综合用户研究评估,本方法优于所有现有方案,获得88-95%的用户偏好。项目页面:https://realmdreamer.github.io/

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员