Query-service relevance prediction in e-commerce search systems faces strict latency requirements that prevent the direct application of Large Language Models (LLMs). To bridge this gap, we propose a two-stage reasoning distillation framework to transfer reasoning capabilities from a powerful teacher LLM to a lightweight, deployment-friendly student model. In the first stage, we address the limitations of general-purpose LLMs by constructing a domain-adapted teacher model. This is achieved through a three-step process: domain-adaptive pre-training to inject platform knowledge, supervised fine-tuning to elicit reasoning skills, and preference optimization with a multi-dimensional reward model to ensure the generation of reliable and preference-aligned reasoning paths. This teacher can then automatically annotate massive query-service pairs from search logs with both relevance labels and reasoning chains. In the second stage, to address the challenges of architectural heterogeneity in standard distillation, we introduce Contrastive Reasoning Self-Distillation (CRSD). By modeling the behavior of the same student model under "standard" and "reasoning-augmented" inputs as a teacher-student relationship, CRSD enables the lightweight model to internalize the teacher's complex decision-making mechanisms without needing the explicit reasoning path at inference. Offline evaluations and online A/B testing in the Meituan search advertising system demonstrate that our framework achieves significant improvements across multiple metrics, validating its effectiveness and practical value.


翻译:电子商务搜索系统中的查询-服务相关性预测面临着严格的延迟要求,这使得大型语言模型无法直接应用。为弥合这一差距,我们提出了一种两阶段推理蒸馏框架,将强大的教师大语言模型的推理能力迁移至轻量级、易于部署的学生模型。在第一阶段,我们通过构建领域适应的教师模型来克服通用大语言模型的局限性。这通过三步流程实现:领域自适应预训练以注入平台知识,监督微调以激发推理技能,以及结合多维奖励模型的偏好优化,确保生成可靠且符合偏好的推理路径。该教师模型随后可自动为搜索日志中的海量查询-服务对标注相关性标签及推理链。在第二阶段,针对标准蒸馏中架构异质性带来的挑战,我们引入了对比推理自蒸馏方法。该方法通过将同一学生模型在“标准”输入和“推理增强”输入下的行为建模为师生关系,使轻量级模型能够内化教师模型的复杂决策机制,而无需在推理时显式依赖推理路径。在美团搜索广告系统中的离线评估与在线A/B测试表明,我们的框架在多项指标上均取得显著提升,验证了其有效性与实用价值。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员