Sequence modeling with State Space models (SSMs) has demonstrated performance surpassing that of Transformers in various tasks, raising expectations for their potential to outperform the Decision Transformer and its enhanced variants in offline reinforcement learning (RL). However, decision models based on Mamba, a state-of-the-art SSM, failed to achieve superior performance compared to these enhanced Decision Transformers. We hypothesize that this limitation arises from information loss during the selective scanning phase. To address this, we propose the Decision MetaMamba (DMM), which augments Mamba with a token mixer in its input layer. This mixer explicitly accounts for the multimodal nature of offline RL inputs, comprising state, action, and return-to-go. The DMM demonstrates improved performance while significantly reducing parameter count compared to prior models. Notably, similar performance gains were achieved using a simple linear token mixer, emphasizing the importance of preserving information from proximate time steps rather than the specific design of the token mixer itself. This novel modification to Mamba's input layer represents a departure from conventional timestamp-based encoding approaches used in Transformers. By enhancing performance of Mamba in offline RL, characterized by memory efficiency and fast inference, this work opens new avenues for its broader application in future RL research.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2024年5月21日
Arxiv
17+阅读 · 2023年12月4日
Arxiv
13+阅读 · 2023年2月7日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
14+阅读 · 2024年5月21日
Arxiv
17+阅读 · 2023年12月4日
Arxiv
13+阅读 · 2023年2月7日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员