The explosive growth of artificial intelligence (AI) workloads in modern data centers demands a radical transformation of interconnect architectures. Traditional copper and optical wiring face fundamental challenges in latency, power consumption, and rigidity, constraining the scalability of distributed AI clusters. This article introduces a vision for Terahertz (THz) Wireless Data Center (THz-WDC) that combines ultra-broadband capacity, one-hop low-latency communication, and energy efficiency in the short-to-medium range (1-100m). Performance and technical requirements are first articulated, including up to 1 Tbps per link, aggregate throughput up to 10 Tbps via spatial multiplexing, sub-50 ns single-hop latency, and sub-10 pJ/bit energy efficiency over 20m. To achieve these ambitious goals, key enabling technologies are explored, including digital-twin-based orchestration, low-complexity beam manipulation technologies, all-silicon THz transceivers, and low-complexity analog baseband architectures. Moreover, as future data centers shift toward quantum and chiplet-based modular architectures, THz wireless links provide a flexible mechanism for interconnecting, testing, and reconfiguring these modules. Finally, numerical analysis is presented on the latency and power regimes of THz versus optical and copper interconnects, identifying the specific distance and throughput domains where THz links can surpass conventional wired solutions. The article concludes with a roadmap toward wireless-defined, reconfigurable, and sustainable AI data centers.
翻译:现代数据中心中人工智能(AI)工作负载的爆炸式增长,对互连架构提出了根本性变革的需求。传统的铜缆和光缆在延迟、功耗和刚性方面面临根本性挑战,制约了分布式AI集群的可扩展性。本文提出了一种太赫兹无线数据中心(THz-WDC)的愿景,它在中短距离(1-100米)内结合了超宽带容量、单跳低延迟通信和能源效率。首先阐述了性能和技术要求,包括每链路高达1 Tbps的速率、通过空间复用实现高达10 Tbps的聚合吞吐量、低于50纳秒的单跳延迟,以及在20米距离上低于10皮焦/比特的能效。为实现这些宏伟目标,本文探讨了关键的使能技术,包括基于数字孪生的编排、低复杂度波束操控技术、全硅太赫兹收发器以及低复杂度模拟基带架构。此外,随着未来数据中心向量子和基于芯粒的模块化架构转变,太赫兹无线链路为这些模块的互连、测试和重新配置提供了一种灵活的机制。最后,本文对太赫兹与光互连及铜互连在延迟和功耗方面进行了数值分析,确定了太赫兹链路能够超越传统有线解决方案的具体距离和吞吐量范围。文章最后展望了迈向无线定义、可重构且可持续的AI数据中心的路线图。