Home-based single-lead AI-ECG devices have enabled continuous, real-world cardiac monitoring. However, the accuracy of parameter calculations from single-lead AI-ECG algorithm remains to be fully validated, which is critical for conditions such as Long QT Syndrome (LQTS) and First-Degree Atrioventricular Block (AVBI). In this multicenter study, we assessed FeatureDB, an ECG measurements computation algorithm, in the context of single-lead monitoring using three annotated datasets: PTB-XL+ (n=21,354), CSE (n=105), and HeartVoice-ECG-lite (n=369). FeatureDB showed strong correlation with standard ECG machines (12SL and Uni-G) in key measurements (PR, QRS, QT, QTc), and high agreement confirmed by Bland-Altman analysis. In detecting LQTS (AUC=0.786) and AVBI (AUC=0.684), FeatureDB demonstrated diagnostic performance comparable to commercial ECG systems (12SL: 0.859/0.716; Uni-G: 0.817/0.605), significantly outperforming ECGDeli (0.501/0.569). Notably, FeatureDB can operate locally on resource-limited devices, facilitating use in low-connectivity settings. These findings confirm the clinical reliability of FeatureDB for single-lead ECG diagnostics and highlight its potential to bridge traditional ECG diagnostics with wearable technology for scalable cardiovascular monitoring and early intervention.


翻译:基于家庭场景的单导联AI-ECG设备已实现连续的真实世界心脏监测。然而,单导联AI-ECG算法参数计算的准确性仍有待充分验证,这对于长QT综合征(LQTS)和一度房室传导阻滞(AVBI)等疾病的诊断至关重要。在这项多中心研究中,我们使用三个标注数据集——PTB-XL+(n=21,354)、CSE(n=105)和HeartVoice-ECG-lite(n=369),评估了心电图测量计算算法FeatureDB在单导联监测场景下的性能。FeatureDB在关键测量参数(PR、QRS、QT、QTc)上与标准心电图机(12SL和Uni-G)表现出强相关性,且Bland-Altman分析证实了其高度一致性。在检测LQTS(AUC=0.786)和AVBI(AUC=0.684)方面,FeatureDB的诊断性能与商用心电图系统相当(12SL:0.859/0.716;Uni-G:0.817/0.605),并显著优于ECGDeli(0.501/0.569)。值得注意的是,FeatureDB可在资源受限的设备上本地运行,便于在低连接性环境中使用。这些结果证实了FeatureDB在单导联心电图诊断中的临床可靠性,并突显了其在连接传统心电图诊断与可穿戴技术、实现可扩展心血管监测及早期干预方面的潜力。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员