We consider the problem of conditional density estimation, which is a major topic of interest in the fields of statistical and machine learning. Our method, called Marginal Contrastive Discrimination, MCD, reformulates the conditional density function into two factors, the marginal density function of the target variable and a ratio of density functions which can be estimated through binary classification. Like noise-contrastive methods, MCD can leverage state-of-the-art supervised learning techniques to perform conditional density estimation, including neural networks. Our benchmark reveals that our method significantly outperforms in practice existing methods on most density models and regression datasets.


翻译:我们研究了条件密度估计问题,这是统计与机器学习领域的重要课题。本文提出的方法称为边际对比判别法(MCD),该方法将条件密度函数重构为两个因子:目标变量的边缘密度函数和一个可通过二元分类估计的密度函数比值。与噪声对比方法类似,MCD能够利用包括神经网络在内的先进监督学习技术进行条件密度估计。实验结果表明,在大多数密度模型与回归数据集上,本方法显著优于现有方法。

0
下载
关闭预览

相关内容

【CVPR2024】医学基础模型的低秩知识分解
专知会员服务
35+阅读 · 2024年4月29日
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
【CVPR2022】EDTER:基于Transformer的边缘检测(CVPR2022)
专知会员服务
33+阅读 · 2022年3月18日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【CVPR2024】医学基础模型的低秩知识分解
专知会员服务
35+阅读 · 2024年4月29日
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
【CVPR2022】EDTER:基于Transformer的边缘检测(CVPR2022)
专知会员服务
33+阅读 · 2022年3月18日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
相关资讯
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员