The Heyland circle diagram is a classical graphical tool for representing the steady-state behavior of induction machines using no-load and blocked-rotor test data. While widely used in alternating-current machinery texts, the diagram is typically presented as a hand-constructed aid and lacks a standardized computational formulation. This paper presents HeylandCircle, a computational framework that reconstructs the classical Heyland circle diagram directly from standard test parameters. The framework formalizes the traditional geometric construction as a deterministic, reproducible sequence of geometric operations, establishing a clear mapping between measured data, fixed geometric objects, and steady-state operating points. Quantities such as power factor, slip, output power, torque, and efficiency are obtained through explicit geometric relationships on the constructed diagram. Validation using a representative textbook example demonstrates close agreement with classical results. The framework provides a computational realization of the traditional Heyland diagram suitable for instruction, analysis, and systematic extension.
翻译:Heyland圆图是一种经典的图形工具,用于根据空载和堵转试验数据表示感应电机的稳态行为。尽管该图在交流电机文献中被广泛使用,但通常以手工绘制辅助工具的形式呈现,缺乏标准化的计算表达形式。本文提出HeylandCircle计算框架,可直接根据标准试验参数重构经典的Heyland圆图。该框架将传统几何构造形式化为确定且可复现的几何操作序列,建立了测量数据、固定几何对象与稳态工作点之间的清晰映射关系。功率因数、转差率、输出功率、转矩和效率等物理量可通过构造图上的显式几何关系获得。采用典型教科书案例进行的验证表明,本框架计算结果与经典结果高度吻合。该框架为传统Heyland图提供了适用于教学、分析及系统化扩展的计算实现方案。